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We know very little about physiological constraints on the evolution of life-history traits in general, and,
in particular, about physiological and molecular adjustments that accompany the evolution of variation
in lifespan. Identifying mechanisms that underlie adaptive variation in lifespan should provide insight into
the evolution of trade-offs between lifespan and other life-history traits. Telomeres, the DNA caps at the
ends of linear chromosomes, usually shorten as animals age, but whether telomere rate of change is
associated with lifespan is unknown. We measured telomere length in erythrocytes from five bird species
with markedly different lifespans. Species with shorter lifespans lost more telomeric repeats with age than
species with longer lifespans. A similar correlation is seen in mammals. Furthermore, telomeres did not
shorten with age in Leach’s storm-petrels, an extremely long-lived bird, but actually lengthened. This
novel finding suggests that regulation of telomere length is associated not only with cellular replicative
lifespan, but also with organismal lifespan, and that very long-lived organisms have escaped entirely any
telomeric constraint on cellular replicative lifespan.
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1. INTRODUCTION

Natural selection should oppose senescence, as long life-
spans provide organisms with more reproductive opport-
unities. But, the senescent decline in survival and
reproductive performance that individuals experience with
advancing age is nearly universal in the life history of ani-
mals (Williams 1957). There is a wide range in maximum
lifespans in different species. Species with long lifespans
are particularly interesting because they may possess
mechanisms that delay the onset of senescence and/or pro-
vide more effective defences against destructive ageing
processes (Austad 2001). If we can identify physiological
or molecular mechanisms that underlie the adaptive vari-
ation in lifespan, this may shed light on the evolution of
trade-offs between lifespan and other life-history traits.

Birds live longer than mammals of similar body size,
despite features of their biology that would be expected
to decrease lifespan, such as high body temperatures and
metabolic rates and blood glucose concentrations that
exceed those found in mammals (Holmes & Austad
1995). Factors that affect maximum lifespan in birds,
however, are not well known. Oxidative damage from free-
radical production during oxidative metabolism (Harman
1956; Barja & Herrero 2000) and cell replicative sen-
escence, a halt in the cell’s ability to proliferate caused by
the shortening of telomeres (West et al. 1989; Goldstein
1990; Vaziri et al. 1993) have been suggested as causal
agents of ageing or age-related diseases. We report here
that telomere rate of change (TROC) varies with
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maximum lifespan in birds and mammals, such that long-
lived animals experience less-rapid telomere shortening
than short-lived animals, and telomeres actually appear to
lengthen with age in the longest-lived birds.

Telomeres, the termini of linear eukaryotic chromo-
somes, are involved in stabilizing chromosomal-end integ-
rity (Prowse & Greider 1995), inhibiting the aberrant
fusions and rearrangements that occur on broken chromo-
somes (McClintock 1941) and aiding the completion of
duplication (Watson 1972). During each cell cycle, telo-
meric repeats (T2AG3)n are lost because DNA polymerase
is unable to replicate the 3� end of linear DNA completely
(Watson 1972), leaving a G-strand overhang. In some
tissues, such as germ cells and carcinomas, telomeric
repeats are maintained by telomerase, a ribonucleoprotein
capable of elongating telomeres de novo (Greider & Black-
burn 1985). In the absence of adequate telomerase activity,
however, telomeres shorten with each cell division (Vaziri
et al. 1994; Venkatesan & Price 1998), and we have recently
shown that telomeres shorten with age in erythrocytes from
zebra finches (Haussmann & Vleck 2002). In the present
study, we measured telomere length in known-aged individ-
uals of five bird species of different lifespans to determine
whether telomeres from the nucleated blood cells (mainly
erythrocytes) of these birds shorten with age and how the
rate of shortening varies with maximum lifespan.

2. METHODS

(a) Species
We determined the relationship between telomere length and

age in cross-sectional samples from zebra finches (Taeniopygia
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Table 1. Avian species studied, average body mass and predicted and observed lifespans.

lifespan
predicted maximum maximum observed (percentage of

species body mass (kg) lifespan (years)a lifespan (years)b predicted)

zebra finchc 0.012 7.3 5 69
tree swallowd 0.021 8.1 11 135
Adélie penguine 4.600 23.9 20 84
common ternf 0.120 11.5 26 226
Leach’s storm-petrelg 0.045 9.5 36 380

a Predicted lifespan based on body mass from the equation lifespan = 17.6 (mass in kg)0.20 (Lindstedt & Calder 1976). b Based
on published values for each species living in the wild. c Zann (1996). d Robertson et al. (1992). e Williams (1995). f Nisbet
(2002). g Huntington et al. (1996).

guttata), tree swallows (Tachycineta bicolor), Adélie penguins
(Pygoscelis adeliae), common terns (Sterna hirundo) and Leach’s
storm-petrels (Oceanodroma leucorhoa) (table 1). Zebra finch
samples were collected from a captive colony maintained at Iowa
State University since 1996. Tree swallow blood samples were
collected from field sites near Ithaca, NY, from a study popu-
lation followed since 1985 (Winkler & Allen 1996). Adélie pen-
guin samples were obtained from captive known-age birds at
San Diego SeaWorld, CA. Common tern blood samples were
collected on Bird Island, MA, from a study population followed
since 1970 (Nisbet et al. 2002). Leach’s storm-petrel samples
were collected on Kent Island, New Brunswick, from a popu-
lation studied since 1947 (Huntington et al. 1996).

The reported maximum lifespans in the wild for these species
range from 5 to 36 years. These values are based on long-term
field studies with banding records for 2000 to 90 000 individuals
per species. While there may be some error in these maximum
lifespans, we think our estimates are robust, and greater accu-
racy is unlikely to change our conclusions. Body-size differences
between species explain variation in a number of life-history
parameters including lifespan, as larger animals usually live
longer than smaller ones (Holmes & Austad 1995). Zebra
finches, tree swallows and Adélie penguins have maximum life-
spans similar to those predicted for birds of their size, whereas
common terns and Leach’s storm-petrels live considerably
longer than predicted (table 1).

(b) Telomere length determination
We determined telomere restriction fragment (TRF) length in

erythrocyte DNA. Fresh whole blood (ca. 50 µl) was collected
from the brachial or jugular vein and immediately diluted in
100 µl of ice-cold 2% ethylenediaminetetraacetic acid. DNA was
extracted from isolated erythrocyte nuclei using a salt-extraction
alcohol-precipitation method for samples from zebra finches,
tree swallows, Adélie penguins and Leach’s storm-petrels and
one-fifth of the common tern samples. The DNA from the
remainder of the common tern samples was extracted from iso-
lated erythrocyte nuclei using agarose plugs (Biorad, Hercules,
CA, USA). Analysis of covariance (ANCOVA) indicated that
there was no significant effect of extraction method on the
relationship between TRF lengths and age (F2,41 = 1.45,
p = 0.23), so all common tern samples were included in sub-
sequent analyses, regardless of extraction technique. Genomic
DNA was digested for 16 h with Hinf I (50 U; New England
Biolabs Inc., Beverly, MA, USA) at 37 °C, and DNA concen-
tration was determined using fluorometry. Approximately 10 µg
of digested DNA fragments from each individual were separated
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on a 0.6% non-denaturing agarose gel (3 V cm�1) for 21 h. We
ran three 32P-labelled Lambda/Hind III size markers on each gel
to test for uniformity of DNA migration rate across the gel, and
one bird sample was run four times on each gel to determine
the intra- and inter-gel coefficients of variation (all less than
1.5% for each species).

Gels were then dried and hybridized for 16 h at 37 °C with
32P-labelled (C3TA2)4 oligonucleotides in hybridization solution.
We used a phosphor imager system (Molecular Dynamics)
to visualize the TRFs and densitometry (ImageQuant v. 1.2)
to determine the position and strength of the radioactive signal
in each of the lanes over the range of 3–30 kb (determined using
a Lambda/Hind III size marker). Average labelled TRF length
in each lane was calculated as the mean of the optical density
using the formula: L = �(ODiLi)/�(ODi), where ODi is the
densitometry output at position i, and Li is the length of the
DNA (in base pairs; bp) at position i.

3. RESULTS

Mean TRF length in erythrocytes decreased with age in
zebra finches, tree swallows, Adélie penguins and com-
mon terns (figure 1). Unexpectedly, TRF length did not
decrease with age in Leach’s storm-petrel erythrocytes,
but rather increased (figure 1). Even if the values for juv-
enile Leach’s storm-petrels are removed, the relationship
between age and TRF length in adults remains signifi-
cantly positive (slope = 34 ± 13 (s.e.) bp yr�1, F1,24 = 7.06,
p � 0.01, r2 = 0.23). Lack of telomere shortening with age
in Leach’s storm-petrels suggests that protection or pres-
ervation of telomeric sequence length is associated with
exceptional longevity in this bird. TROC (the slope of the
regression line for telomere length versus age) is the extent
of telomere length change per year (usually shortening),
although in our cross-sectional study we cannot rule out
age-related selection effects on telomere length, e.g. the
oldest individuals may be that subset of an age cohort with
the slowest TROC. If this is so, our values for TROC may
underestimate the true mean TROC for the species. In the
case of Leach’s storm-petrels the lack of overlap between
hatchlings and very old individuals does suggest some
mechanism for telomere augmentation in this species.

TROC correlates directly with maximum reported life-
span for these species (figure 2), such that the long-lived
species experience less telomere shortening per year than
do the short-lived species. If we use normalized lifespan
(lifespan as a percentage of that predicted based on body
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Figure 1. TRF length as a function of age in birds. The
lines are the best-fit regressions through the data in (a) zebra
finches (slope = �515 ± 95 (s.e.) bp yr�1, F1,26 = 29.9,
p � 0.0001, r2 = 0.54); (b) tree swallows (slope = �391 ± 65
(s.e.) bp yr�1, F1,47 = 23.3, p � 0.0001, r 2 = 0.34); (c) Adélie
penguins (slope = �235 ± 48 (s.e.) bp yr�1, F1,21 = 23.9,
p � 0.0001, r2 = 0.55); (d ) common terns (slope = �57 ± 7
(s.e.) bp yr�1, F1,43 = 67.0, p � 0.0001, r 2 = 0.61) and (e)
Leach’s storm-petrels (slope = �75 ± 10 (s.e.) bp yr�1,
F1,32 = 59.7, p � 0.0001, r2 = 0.66). No samples were
obtained from Leach’s storm-petrels between 1 and 9 years
of age; young birds do not return to the breeding site for ca.
3–6 years after fledging.

mass), the relationship remains positive and significant
(F1,3 = 10.5, p = 0.05, r2 = 0.78). The data show no signifi-
cant relationship between absolute length of telomeres
early in life and lifespan (p = 0.48) (Vleck et al. 2003).

Because the between-species regression was based on
only five taxa, we also assessed the significance of the
relationship between maximum lifespan and TROC using
a randomization test. Telomere length was randomly
shuffled with respect to age (within species) for the 174
original birds; TROC was recalculated using these ran-
domized data, and these values were correlated with spec-
ies maximum lifespans. This procedure was repeated a
million times. Only 215 randomizations had F-values
greater than or equal to that in the observed data (p-value
based on randomization = 0.000 215).

4. DISCUSSION

Many studies in a variety of tissues from mammals have
shown a gradual decrease in TRF length with organismal
age (Hastie et al. 1990; Coviello-McLaughlin & Prowse
1997; Frenck et al. 1998; Friedrich et al. 2000) and with
doubling time in cell culture (Vaziri et al. 1994). This
paper is the first, to our knowledge, to examine TROC
as a correlate of species maximum lifespan. TROC is an
important variable because it yields information on the
number of telomere base pairs that are lost over time in
vivo, rather than on how many base pairs are lost per cell
division in culture. TROC explains 98% of the variation
in maximum lifespan of the species studied, suggesting
that this variable may be an important determinant of
absolute lifespan, perhaps because it correlates with the
time that the shortest telomere takes to reach a critical
length (Hemann et al. 2001).

We found comparable TROC values for eight mam-
malian species (table 2). Only data from normal tissues
(non-cancerous, HIV negative, non-germ cell) that
spanned a significant portion of the species’ lifespan were
included. We excluded cell-culture data as these investi-
gate the relationship between telomere length and popu-
lation doublings, which does not reflect the rate of in vivo
cellular division (Rohme 1981). Although there are well-
known differences in TROC between different tissue types
from a single organism, we included all the data here for
completeness. TROC in mammals also shows a positive
correlation with maximum lifespan (figure 3). If humans
are excluded from the mammalian dataset to produce a
range of maximum lifespans similar to that of the bird data,
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Table 2. Telomere rate of change (TROC) and maximum lifespans in mammalian species taken from published literature (see
§ 4 for details).

tissue age range sampled maximum
species sampled TROC (bp yr�1) p-valueo n (years) lifespanp (years)

Mus spretusa spleen �600 0.0001 145 0–2 3.5
Mus spretusa brain �336 0.17 88 0–2 3.5
Canis familiarisb mammary �574 0.02 12 1–7 14
Canis familiarisc leucocytes �97q 0.57q 21 1–13 20
Ovis ariesd mammary �590 0.01 18 1–6 20
Macaca nemestrinae leucocytes �440 — 12 2–9 26
Bos taurusf leucocytes �230 0.01 50 0–18 30
Macaca fascicularise leucocytes �140 — 12 4–8 37
Macaca fascicularisg leucocytes �62.7 0.0001 55 0–34 37
Pan troglodytesh leucocytes �58q — 1 followed for 14 years 53
Homo sapiensi leucocytes �97q 0.02q 5r 0–82 110
Homo sapiensj leucocytes �50 0.04 9 73–95 110
Homo sapiensj skin �78 0.006 7 73–91 110
Homo sapiensj synovium �25 0.5 8 73–95 110
Homo sapiensk leucocytes �33 0.001 50 13–90 110
Homo sapiensl fibroblasts �15 0.016 31 0–94 110
Homo sapiensm stem cells �68q 0.003q 11 0–59 110
Homo sapiensn leucocytes �55 — 2 followed for 8 years 110

a Coviello-McLaughlin & Prowse (1997). b Yazawa et al. (2001). c Nasir et al. (2001). d Shiels et al. (1999). e Shibata et al.
(1999). f Miyashita et al. (2002). g Lee et al. (2002). h Feng et al. (1998). i Frenck et al. (1998). j Friedrich et al. (2000). k Hastie
et al. (1990). l Allsopp et al. (1992). m Vaziri et al. (1994). n Feng et al. (1999). o Reported or calculated significance level for
study (some papers did not provide a significance level). p Altman & Dittmer (1972). q Calculated from data in text or figure
(some papers did not provide a significance level). r Calculated from mean values for five age cohorts.
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Figure 2. The TROC as a function of maximum observed
lifespan in birds. Note that TROC is negative in most
species, but positive in the Leach’s storm-petrel. The line
(TROC = �607 � 19.5 maximum lifespan) is the best-fit
regression through the data (slope = 19.5 ± 1.2 (s.e.) bp yr�2,
F1,3 = 262, p = 0.0005, r 2 = 0.99). Black circle, zebra finch;
triangle, tree swallow; square, Adélie penguin; diamond,
common tern; open circle, Leach’s storm-petrel.

linear regression through the data produces a slope that
does not differ from the slope in birds (slope = 17 ± 4.7
(s.e.) bp yr�2, F2,9 = 1.17, p = 0.15). However, when
humans are included, the relationship appears to be curvi-
linear in mammals. When we have data from the longest-
lived birds, a similar curvilinear relationship may be
revealed. Future comparative studies should also control
for phylogeny.

Proc. R. Soc. Lond. B (2003)

200

100

0

–100

–200

–300

–400

–500

–600

–700

–800

te
lo

m
er

e 
ra

te
 o

f 
ch

an
ge

 (
bp

 y
r_ 1

)

10 30 50 70 90 110

maximum lifespan (years)

Figure 3. The TROC as a function of maximum observed
lifespan in mammals. All available data are plotted, but only
those data that had a significant TROC (closed symbols)
have been fitted by using a lowess smoothing function and
not those with non-significant TROCs (open symbols; see
table 2 and § 4 for more details).

The strong telomere length–lifespan relation in mam-
mals is in accordance with the one we found for birds,
despite the fact that the tissues sampled and methods
employed differed markedly in the various mammalian
studies. This concordance suggests that a fundamental
link between telomere length and organismal lifespan may
exist, perhaps resulting from the same mechanisms that
link telomere shortening to cell replicative lifespan. We
know that in many vertebrate species somatic cells demon-
strate a limited proliferative capacity (Hayflick 1965), and
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when this limit is reached these senescent cells contribute
to age-related diseases (West et al. 1989; Goldstein 1990;
Vaziri et al. 1993). Interestingly, a positive relationship
between species lifespan and longevity of individual
erythrocytes in vivo has been known for some time
(Rohme 1981). If cellular turnover is slow in a given
tissue, then TROC in that tissue will also be low because
few cell divisions will occur per unit time.

Organismal and cellular lifespans should be positively
correlated with other mechanisms that reduce the cumu-
lative damage of ageing. Comparative studies have shown
that rates of production of reactive oxygen species and lev-
els of oxidative damage are lower in long-lived mammals
than in short-lived mammals (Sohal et al. 1990; Ku &
Sohal 1993; Barja & Herrero 2000). Birds appear to have
lower rates of formation of reactive oxygen species (Ku &
Sohal 1993; Barja et al. 1994) and are more resistant to
oxidative damage (Ogburn et al. 1998) than mammals of
comparable size but shorter lifespan. Based on cell-culture
experiments, long-lived birds may be more resistant to
damage by reactive oxygen species than short-lived birds
(Ogburn et al. 1998, 2001). Our study suggests that long-
lived animals may also be less susceptible than short-lived
animals to cell replicative senescence caused by shortening
telomeres. Reduced oxidative damage in long-lived species
could also contribute to reduced telomere shortening, as
the latter can be accelerated by oxidative damage (von
Zglinicki et al. 2000).

Upregulation of telomerase activity could also delay tel-
omere shortening, although telomerase activity is downre-
gulated in most postnatal somatic tissue (Prowse &
Greider 1995; Forsyth et al. 2002). Telomerase sup-
pression may have been selected as a mechanism for
reducing the frequency of cancer in somatic cells (Harley
et al. 1994). In humans, telomerase activity is repressed
in most somatic cell types including fibroblasts, embryonic
kidney cells, lymphocytes and epithelial cells (Counter et
al. 1992; Shay et al. 1993; Vaziri et al. 1993; Forsyth et
al. 2002). While human haemopoietic stem cells possess
some telomerase activity, telomeric DNA is nonetheless
lost with age, suggesting that telomerase activity is inad-
equate to maintain telomere length in this cell type (Vaziri
et al. 1994). Some mammalian tissues without telomerase
activity are able to maintain telomere length through a
mechanism termed the alternative lengthening of telom-
eres (ALT), but to date evidence for ALT activity has
been found only in abnormal tissues (Henson et al. 2002).
Variation in telomerase or ALT activity could explain
species-level, individual and tissue-specific variation in tel-
omere shortening. Long-lived storm-petrels might employ
these mechanisms in somatic tissues such as haemopoietic
stem cells, allowing telomere length to be maintained as
they age. If so, it would be of considerable interest to learn
how this species avoids the tumour susceptibility associa-
ted with these mechanisms.

If long-lived birds, such as storm-petrels, have evolved
age-combating adaptations, such as active telomere elong-
ation by upregulation of telomerase, freeing them from the
constraint on cellular replicative lifespan normally
imposed by shortening telomeres, then they may also pro-
vide insight into other fundamental questions in ageing
biology. Here, we suggest that variation in TROC may be
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a molecular mechanism underlying the evolution of vari-
ation in species lifespans.
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